
Pyramid Restful Framework
Documentation

Release 1.0.0

Daniel Poland

May 24, 2018

User Guide

1 Quick Start 3

2 Configuration 5

3 Class-based Views 7
3.1 Permissions . 8

4 Generic Views 9
4.1 API Reference . 10

5 ViewSets 11
5.1 Example . 11
5.2 ViewSet Actions . 12
5.3 Including extra actions for routing . 13
5.4 Base ViewSet Classes . 14

6 Permissions 17

7 Filters 19
7.1 FieldFilter . 19
7.2 SearchFilter . 19
7.3 OrderFilter . 20

8 Expandables 21
8.1 ExpandableViewMixin . 21
8.2 ExpandableSchemaMixin . 22

9 Pagination 23
9.1 Custom Pagination Classes . 23

10 views 25

11 generics 27

12 viewsets 29

13 mixins 31

i

14 decorators 33

15 routers 35

16 permissions 37

17 filters 39

18 expandables 43

19 pagination 45

20 Indices and tables 47

Python Module Index 49

ii

Pyramid Restful Framework Documentation, Release 1.0.0

A RESTful API framework for Pyramid heavily influenced by django-rest-framework.

The goal of this project is to provide DRF’s view patterns on a lighter weight web framework that grants you more
fine grained and explicit control over database queries and object serialization/deserialization. This is accomplished
using SQLAlchemy as an ORM and marshmallow Schemas for object serialization and deserialization.

To get the most out of this documentation, and PRF in general, it is recommended that you first familiarize yourself
with the following documentation:

• Pyramid

• Django Rest Framework

• SQLAlchemy

• Marshmallow

User Guide 1

https://github.com/encode/django-rest-framework
http://www.sqlalchemy.org/
https://github.com/marshmallow-code/marshmallow
https://docs.pylonsproject.org/projects/pyramid/en/latest/
http://www.django-rest-framework.org/#quickstart
http://docs.sqlalchemy.org/en/latest/
https://marshmallow.readthedocs.io/en/latest/

Pyramid Restful Framework Documentation, Release 1.0.0

2 User Guide

CHAPTER 1

Quick Start

The quickest way to get started with pyramid-restful-framework is to use pyramid-cookiecutter-restful. The cook-
iecutter will scaffold a project that includes Pyramid, SQLAlchemy and pyramid-restful-framework. The project uses
Django like settings instead of .ini files for configuration. It includes a wsgi.py file for running the app.

If you like ini files or want to include pyramid-restful-framework in an existing project you can install the library via
pip.

$ pip install pyramid-restful-framework

Be sure to add pyramid_restful to the pyramid.includes directive in your configuration file(s).

pyramid.includes = pyramid_restful

Alternatively you can use pyramid.config.Configurator.include in your app setup:

config.include('pyramid_restful')

3

https://github.com/danpoland/pyramid-cookiecutter-restful

Pyramid Restful Framework Documentation, Release 1.0.0

4 Chapter 1. Quick Start

CHAPTER 2

Configuration

Currently there are three settings you can use to configure default behavior in PRF.

• default_pagination_class: A string representing the path to the default pagination class to use.

• page_size: An integer used as the default page size for pagination.

• default_permission_classes: A list or tuple of strings. Each string represents the path to a permissions class to
use by default with each view.

If you used pyramid-cookiecutter-restful to create your project you can simply update these values in the settings.
__init__.py file in the PYRAMID_APP_SETTINGS variable:

PYRAMID_APP_SETTINGS = {
'pyramid.reload_templates': PYRAMID_RELOAD_TEMPLATES,
'pyramid.debug_authorization': PYRAMID_DEBUG_AUTHORIZATION,
'pyramid.debug_notfound': PYRAMID_DEBUG_NOTFOUND,
'pyramid.debug_routematch': PYRAMID_DEBUG_ROUTEMATCH,
'pyramid.default_locale_name': 'en',
pyramid_restful settings
'restful.page_size': 50,
'restful.default_pagination_class': 'pyramid_restful_jsonapi.pagination.

→˓JSONAPIPagination',
'restful.default_permission_classes': ['exampleapp.permissions.

→˓AuthenticatedAndActivePermission'],
}

If you are adding PRF to an existing project or your prefer using ini files for configuration you can set the values for
these configurations by adding a new restful section to you ini file:

[restful]
restful.page_size = 50
restful.default_pagination_class = 'pyramid_restful_jsonapi.pagination.
→˓JSONAPIPagination'
restful.default_permission_classes = 'exampleapp.permissions.
→˓AuthenticatedAndActivePermission'

5

https://github.com/danpoland/pyramid-cookiecutter-restful

Pyramid Restful Framework Documentation, Release 1.0.0

6 Chapter 2. Configuration

CHAPTER 3

Class-based Views

The APIView serves as the base class for all views in PRF. It replaces the function based views often used in pyramid
applications. Requests are passed to the view from the router and are dispatched to a method in the view with the same
name as the HTTP method from the request. If the view class does not implement a method used by the request a 405
response is returned.

For example, in the class definition below a GET request would routed the class’s get() method and a POST request
would be routed to the class’s post() method:

from pyramid.response import Response

from pyramid_restful.views import APIView

from .models import User

class UserView(ApiView):
"""
A view to list all the users and to create a new User.
"""

def get(self, request, *args, **kwargs):
users = request.dbsession.query(User).all()
return Response(json_body=users)

def post(self, request, *args, **kwargs):
user = User(**request.json_body)
request.dbsession.add(user)
return Response(status=201)

You route APIView classes similar to how you route typical views in pyramid. Below is an example routes.py
file that routes the view defined above:

from . import views

def includeme(config):

(continues on next page)

7

Pyramid Restful Framework Documentation, Release 1.0.0

(continued from previous page)

config.add_route('users', '/users/')
config.add_view(views.UserView.as_view(), route_name='users')

Any URL pattern matching variables used in the route definition will be passed to the view’s method as a kwarg.:

class UserDetailView(ApiView):
"""
Retrieve a specific User.
"""

def get(self, request, id, *args, **kwargs):
user = request.dbsession.query(User).get(id)
return Response(json_body=user)

def includeme(config):
config.add_route('users', '/users/{id}/')
config.add_view(views.UserDetailView.as_view(), route_name='users')

3.1 Permissions

The permission_classes class attribute on ApiView controls which permissions are applied to in-
coming requests. By default, permission_classes is set to the value of the configuration variable
default_permission_classes. See Configuration and Permissions for more details.

8 Chapter 3. Class-based Views

CHAPTER 4

Generic Views

The key advantage of using class-based views is that it allows you to reuse common behavior across many views. PRF
supplies you with a few pre-constructed views that provide commonly used functionality.

The GenericAPIView class allows you quickly compose an API while keeping your code DRY through class
configuration rather than redefining view logic every time you need it.

Examples

Typically when you use a generic view all you need to do is set some of the class attributes.

from pyramid_restful import generics

from .models import User
from .schemas import UserSchema

class UserView(generics.ListCreateAPIView):
model = User
schema_class = UserSchema

That’s all it takes. This provides the same functionality as the UserView created using the APIView class in the
Class-based Views section. It provides two methods. One for GET requests, which returns all the Users, and one for
POST requests, which allows you to add a new User.

In some cases the default behavior might not meet your needs. In those cases you can override the methods on the
view class.

from pyramid.response import Response

from pyramid_restful import generics

from .models import User
from .schemas import UserSchema

class UserView(generics.ListCreateAPIView):
model = User

(continues on next page)

9

Pyramid Restful Framework Documentation, Release 1.0.0

(continued from previous page)

schema_class = UserSchema

def list(self, request, *args, **kwargs):
rows = self.get_query().all()
schema = UserSchema()
data, errors = schema.dump(rows)

return Response(data)

4.1 API Reference

GenericAPIView

This class extends APIView adding commonly used functionality for basic list and detail views. Full fledged API views
are constructed by combining GenericAPIView with mixin classes. A few concrete generic views are provided by
PRF. For a full list of these classes see the Generics API docs.

Attributes

Basics:

• model: The SQLAlchemy model that should be used for returning objects from the view. You must set
this attribute or override the get_query() method.

• schema_class: The marshmallow Schema class to be used for validating and deserializing request data
and for serializing response data.

• lookup_field: The field on the model used to identify individual instance of an model. Defaults to
'id'.

Pagination:

• pagination_class: The pagination class that is used to paginate list results. This defaults to the value
of the restful.default_pagination_class configuration, if set.

Filtering:

• filter_classes: An iterable of classes that extend BaseFilter. Filtering is pretty primative cur-
rently in PRF. Each class in the filter_classes iterable is passed the query used by the viewset
before the query finally executed to produce the data for a response from the view.

10 Chapter 4. Generic Views

CHAPTER 5

ViewSets

A ViewSet is a class-based view that allows you to combine a set of related views into a single class. The most typical
usage of ViewSets is to combine CRUD operations for a particular model in a single class. ViewSets allow you define
methods that handle both detail and list operations in a single class. Unlike a APIView class that defines methods
such as get() or post(), an APIViewSet defines actions like retrive() and create().

5.1 Example

Below we define a single APIViewSet that can be used to retrieve a single user or all the users in the system:

from pyramid.response import Response
from pyramid.httpexceptions import HTTPNotFound

from pyramid_restful import viewsets

from myapp.models import User
from myyapp.schemas import UserSchema

class UserViewSet(viewsets.APIViewSet):
model = User
schema = UserSchema

def list(self, request):
users = request.dbsession.query(User).all()
schema = UserSchema()
content = schema.dump(users, many=True)[0]
return Response(json=content)

def retrieve(self, request, id):
user = request.dbsession.query(User).get(id)

if not user:

(continues on next page)

11

Pyramid Restful Framework Documentation, Release 1.0.0

(continued from previous page)

raise HTTPNotFound()

schema = UserSchema()
content = schema.dump(user)[0]
return Response(json=content)

To route this view in Pyramid we bind the view to two different routes:

from . import views

def includeme(config):
config.add_route('user-list', '/users/')
config.add_view(views.UserViewSet.as_view({'get': 'list'}), route_name='user-list

→˓')

config.add_route('user-detail', '/users/{id}/')
config.add_view(views.UserViewSet.as_view({'get': 'retrieve'}), route_name='user-

→˓detail')

Typically you wont do this. Instead you would use the ViewSetRouter to configure the routes for you:

from pyramid_restful.routers import ViewSetRouter

from . import views

def includeme(config):
router = ViewSetRouter(config)
router.register('users', views.UserViewSet, 'user')

5.2 ViewSet Actions

The ViewSetRouter provides defaults for the standard CRUD actions, as shown below:

class UserViewSet(viewsets.APIViewSet):
"""
Example empty viewset demonstrating the standard
actions that will be handled by a router class.
"""

def list(self, request):
pass

def create(self, request):
pass

def retrieve(self, request, id=None):
pass

def update(self, request, id=None):
pass

def partial_update(self, request, id=None):
(continues on next page)

12 Chapter 5. ViewSets

Pyramid Restful Framework Documentation, Release 1.0.0

(continued from previous page)

pass

def destroy(self, request, id=None):
pass

5.3 Including extra actions for routing

You can add ad-hoc methods to ViewSets that will automatically be routed by the ViewSetRouter by using the
@detail_route or @list_route decorators. The @detail_route includes id in it’s url pattern and is used
for methods that operate on a single instance of model. @list_route decorator is used for methods that operate on
many instances of a model.

Example:

from pyramid.response import Response

from pyramid_restful.viewsets import ModelCRPDViewSet
from pyramid_restful.decorators import list_route, detail_route

from .models import User
from .schemas import UserSchema

class UserViewSet(ModelCRPDViewSet):
model = User
schema = UserSchema

@detail_route(methods=['post'])
def lock(request, id):

user = request.dbsession.query(User).get(id)

if not user:
raise HTTPNotFound()

user.is_locked = True
return Response(status=204)

@list_route(methods=['get'])
def active(request):

users = request.dbsession.query(User).filter(User.is_active == True).all()
schema = UserSchema()
content = schema.dump(users, many=True)[0]
return Response(json=content)

By default the router will append the name of method to the url pattern generated. The two decorated routes above
would result in the following url patterns:

'/users/{id}/lock'
'/users/active'

You can override this behavior by setting the kwarg url_path on the decorator.

5.3. Including extra actions for routing 13

Pyramid Restful Framework Documentation, Release 1.0.0

5.4 Base ViewSet Classes

Generally your not going to need to write your own viewsets. Instead you will use one of the base ViewSet classes
provided by PRF or use a number of mixin classes in your ViewSet to compose a class that only includes the actions
you need for a particular resource.

5.4.1 APIViewSet

The APIViewSet class extends the APIView class and does not provide any actions by default. You will have to
add the action methods explicitly to the class. You can use the standard APIView attributes such as permissions.

5.4.2 GenericAPIViewSet

The GenericAPIViewSet class extends GenericAPIView and does not provide any actions by default, but does
include the base set of generic view behavior, such as the get_object() and get_query() methods. To use the
class you will typically mixin the actions you need from the mixins module or write the action methods explicitly.

5.4.3 The ModelViewSets

PRF provide you with several ModelViewSet implementations. ModelViewSets are simply classes in which sev-
eral action mixins are combined with GenericAPIViewSet. They provide all the functionality that comes with
a GenericAPIView, such as the filter_classes and permission_classes attributes and well as the
get_query() and get_object() methods. The base ModelViewSets provided by PRF along with their default
actions are listed below:

• ReadOnlyModelViewSet: list(), retrieve()

• ModelCRUDViewSet: list(), create(), retrieve(), update(), destroy()

• ModelCRPDViewSet: list(), create(), retrieve(), partial_update(), destroy()

• ModelCRUPDViewSet: list(), create(), retrieve(), update(), partial_update(),
destroy()

5.4.4 Custom ViewSets

If one of the predefined ViewSets doesn’t meet your needs you can always compose your own ViewSet and override
its actions.

Example:

from pyramid_restful import mixins
from pyramid_restful import viewsets

from .models import User
from .schema import UserSchema

class UserViewSet(mixins.CreateModelMixin,
mixins.RetrieveModelMixin,
mixins.UpdateModelMixin):

model = User

(continues on next page)

14 Chapter 5. ViewSets

Pyramid Restful Framework Documentation, Release 1.0.0

(continued from previous page)

schema = UserSchema

def get_query():
"""
Restrict user to the authenticated user.
"""

return super(UserViewSet, self).get_query() \
.filter(User.id == request.user.id)

5.4. Base ViewSet Classes 15

Pyramid Restful Framework Documentation, Release 1.0.0

16 Chapter 5. ViewSets

CHAPTER 6

Permissions

PRF offers a single base class for writing your own permissions, BasePermission. There are two methods that you
can override, has_permission() and has_object_permission(). The first is checked on every request to
a view and the later is checked when a specific instance of an object is being accessed in a view.

In the example below the request’s authenticated user must be an admin:

from pyramid.response import Response

from pyramid_restful.viewsets import ModelCRPDViewSet
from pyramid_restful.permissions import BasePermission

from .models import User
from .schemas import UserSchema

class IsAdminPermission(BasePermission):
message = 'You must be an admin.'

def has_permission(self, request, view):
return request.user.is_admin == True:

class UserViewSet(ModelCRPDViewSet):
model = User
schema = UserSchema
permission_classes = (IsAdminPermission,)

If you prefer you can still use pyramid’s built in authorization and permissions framework. If you are manually routing
a view and using pyramid’s authorization framework you would use permissions just as you would normally:

config is an instance of pyramid.config.Configurator
config.add_route('users', '/users/')
config.add_view(views.UserView.as_view(), route_name='user', permission='view')

If you are routing a ViewSet and using a ViewSetRouter you simply set your permission using the permission
kwarg:

17

Pyramid Restful Framework Documentation, Release 1.0.0

from pyramid.routers import ViewSetRouter

def includeme(config):
router = ViewSetRouter(config)
router.register('users', views.UserViewSet, 'coop', permission='view')

18 Chapter 6. Permissions

CHAPTER 7

Filters

PRF comes with very simple filter functionality. This functionality will likely be improved in the future. As outlined in
the Class-based Views documentation you can attach several filter classes to a class that extends GenericAPIView
by using the filter_classes class attribute. All filter classes must extend the BaseFilter class. PRF comes
with a few predefined filter classes outlined below.

7.1 FieldFilter

The FieldFilter class allows you to filter your request’s query by using query string parameters. The query
string parameters on the request should be formatted as filter[field_name]=val. Comma-separated values
are treated as ORs. Multiple filter query params are AND’d together.

For example given the the ViewSet definition below and a request with the url of https://api.mycoolapp.
com/users/?filter[account_id]=1. The ViewSet would filter the query of users by User.account_id
where the value was 1.

class UserViewSet(ModelCRUDViewSet):
model = User
schema = UserSchema
filter_classes = (FieldFilter,)
filter_fields = (User.account_id, User.email, User.name,)

7.2 SearchFilter

The SearchFilter class allows you to filter your request’s query by using LIKE statements. Comma separated
values are treated as ORs. Multiple search query parameters are OR’d together. (Note: this works differently than mul-
tiple search query parameters use for FieldFilters.) The values are transformed into their all lower-case representation
before the comparision is applied.

19

Pyramid Restful Framework Documentation, Release 1.0.0

For example given the the ViewSet definition below and a request with the url of https://api.mycoolapp.
com/users/?search[email]=gmail,hotmail. The ViewSet would filter the query of users with the a state-
ment similar to: WHERE (user.email LIKE '%gmail%' OR user.email LIKE '%hotmail%').

class UserViewSet(ModelCRUDViewSet):
model = User
schema = UserSchema
filter_classes = (SearchFilter,)
filter_fields = (User.email,)

7.3 OrderFilter

The OrderFilter class allows you to order your request’s query results by the fields specified in the query string
parameters. The value of the query string parameter indicates the direction of the ordering. Either asc or desc. If
multiple ordering query string parameters are used, the order in which they are used will determine the order in which
they are applied for ordering.

For example given the the ViewSet definition below and a request with the url of https://api.mycoolapp.
com/users/?order[name]=asc&order[created_at]=desc. The ViewSet would order the results re-
turned in the response by the User.name field in ascending order, then User.created_at field in descending
order.

class UserViewSet(ModelCRUDViewSet):
model = User
schema = UserSchema
filter_classes = (OrderFilter,)
filter_fields = (User.name, User.created_at,)

20 Chapter 7. Filters

CHAPTER 8

Expandables

Using query string parameters, the expandables mixins allow you to dynamically and efficiently control the ex-
pansion of relationships in the objects returned from your views. Both the ExpandableViewMixin and
ExpandableSchemaMixin can be used independently but are most effective when used together.

8.1 ExpandableViewMixin

The ExpandableViewMixin allows you to dynamically control the joins executed by your view for each request.
Using the expandable_fields class attribute you can configure query joins and options based on the values
passed into the expand query string parameter. This allows you to avoid inadvertently executing extra queries that
expand relationships for each object returned from your view. See the expandables API documentation for more
information on using the expandable_fields attribute.

Example:

from sqlalchemy.orm import subqueryload

from pyramid_restful import viewsets
from pyramid_restful.expandables import ExpandableViewMixin

class AuthorViewSet(viewsets.CRUDModelViewSet,
ExpandableViewMixin):

model = Author
schema_class = AuthorSchema
expandable_fields = {

'books': {'options': [subqueryload(Author.books)]
}

Using the example class above, a request with a query string of ?expand=books would results in
subqueryload(Author.books) being passed to the .options() method on the SQLAlchemy query exe-
cuted by the view. This effectively performs a single query for all of the books related to the authors returned by the

21

Pyramid Restful Framework Documentation, Release 1.0.0

view, which prevents performing individual quries to retrieve the books for each author returned when the authors are
serialized.

8.2 ExpandableSchemaMixin

The ExpandableSchemaMixin is a mixin class for marshmallow.Schema classes. It supports optionally
including Nested fields based on the value of the query string parameters. The query string parameter’s key is
determined by the value of the QUERY_KEY class attribute.

Fields that can be expanded are defined in the schema’s Meta class using the expandable_fields attribute. The
value of expandable_fields should be a dictionary. That dictionary’s keys should match both the name of the
model’s relationship being expanded, and the query string parameter in from the request. The dictionary’s values
should be a marshmallow.fields.Nested definition.

Example:

from marshmallow import Schema, fields

from pyramid_restful.expandables import ExpandableSchemaMixin

class AuthorSchema(ExpandableSchemaMixin, schema)
id = fields.Integer()
name = fields.String()

class Meta:
expandable_fields = {

'books': fields.Nested('BookSchema')
}

22 Chapter 8. Expandables

CHAPTER 9

Pagination

PRF has built in support for pagination. You can set the default pagination class for you project using the
restful.default_pagination_class setting. The pagination class can also be set on a per view set-
tings using the pagination_class class attribute. PRF supports two styles of pagination out of the box,
PageNumberPagination and LinkHeaderPagination pagination. You can find the details about these pag-
ination classes in the pagination section of the API docs.

9.1 Custom Pagination Classes

To create you own pagination classes simply extend the BasePagination class and implement the
paginate_query() and get_paginated_response() methods.

23

Pyramid Restful Framework Documentation, Release 1.0.0

24 Chapter 9. Pagination

CHAPTER 10

views

class pyramid_restful.views.APIView(**kwargs)
Base for class based views. Requests are routed to a view’s method with the same name as the HTTP method of
the request.

permission_classes = []
An iterable of permissions classes. Defaults to default_permission_classes from the pyra-
mid_restful configuration. Override this attribute to provide view specific permissions.

initial(request, *args, **kwargs)
Runs anything that needs to occur prior to calling the method handler.

get_permissions()
Instantiates and returns the list of permissions that this view requires.

check_permissions(request)
Check if the request should be permitted. Raises an appropriate exception if the request is not permitted.

Parameters request – Pyramid Request object.

check_object_permissions(request, obj)
Check if the request should be permitted for a given object. Raises an appropriate exception if the request
is not permitted.

Parameters

• request – Pyramid Request object.

• obj – The SQLAlchemy model instance that permissions will be evaluated against.

options(request, *args, **kwargs)
Handles responding to requests for the OPTIONS HTTP verb.

25

Pyramid Restful Framework Documentation, Release 1.0.0

26 Chapter 10. views

CHAPTER 11

generics

class pyramid_restful.generics.GenericAPIView(**kwargs)
Provide default functionality for working with RESTFul endpoints. pagination_class can be overridden as a
class attribute:

Usage:

class MyView(GenericAPIView):
pagination_class = MyPager

pagination_class
alias of pyramid_restful.pagination.pagenumber.PageNumberPagination

model = None
The SQLAlchemy model class used by the view.

schema_class = None
The marshmallow schema class used by the view.

filter_classes = ()
Iterable of Filter classes to be used with the view.

lookup_field = 'id'
The name of the primary key field in the model used by the view.

get_query()
Get the list of items for this view. You may want to override this if you need to provide different query
depending on the incoming request. (Eg. return a list of items that is specific to the user)

Returns sqlalchemy.orm.query.Query

get_object()
Returns the object the view is displaying. You may want to override this if you need to provide non-
standard queryset lookups. Eg if objects are referenced using multiple keyword arguments in the url conf.

Returns An instance of the view’s model.

27

Pyramid Restful Framework Documentation, Release 1.0.0

get_schema_class()
Return the class to use for the schema. Defaults to using self.schema_class. You may want to override this
if you need to provide different serializations depending on the incoming request.

get_schema_context()
Extra context provided to the schema class.

get_schema(*args, **kwargs)
Return the schema instance that should be used for validating and deserializing input, and for serializing
output.

filter_query(query)
Filter the given query using the filter classes specified on the view if any are specified.

paginator
The paginator instance associated with the view, or None.

paginate_query(query)
Return single page of results or None if pagination is disabled.

get_paginated_response(data)
Return a paginated style Response object for the given output data.

class pyramid_restful.generics.CreateAPIView(**kwargs)
Concrete view for creating a model instance.

class pyramid_restful.generics.ListAPIView(**kwargs)
Concrete view for listing a queryset.

class pyramid_restful.generics.RetrieveAPIView(**kwargs)
Concrete view for retrieving a model instance.

class pyramid_restful.generics.DestroyAPIView(**kwargs)
Concrete view for deleting a model instance.

class pyramid_restful.generics.UpdateAPIView(**kwargs)
Concrete view for updating a model instance.

class pyramid_restful.generics.ListCreateAPIView(**kwargs)
Concrete view for listing a queryset or creating a model instance.

class pyramid_restful.generics.RetrieveUpdateAPIView(**kwargs)
Concrete view for retrieving, updating a model instance.

class pyramid_restful.generics.RetrieveDestroyAPIView(**kwargs)
Concrete view for retrieving or deleting a model instance.

class pyramid_restful.generics.RetrieveUpdateDestroyAPIView(**kwargs)
Concrete view for retrieving, updating or deleting a model instance.

28 Chapter 11. generics

CHAPTER 12

viewsets

class pyramid_restful.viewsets.ViewSetMixin
Overrides .as_view() so that it takes an actions_map keyword that performs the binding of HTTP meth-
ods to actions on the view.

For example, to create a concrete view binding the ‘GET’ and ‘POST’ methods to the ‘list’ and ‘create’ ac-
tions. . .

view = MyViewSet.as_view({‘get’: ‘list’, ‘post’: ‘create’})

classmethod as_view(action_map=None, **initkwargs)
Allows custom request to method routing based on given action_map kwarg.

class pyramid_restful.viewsets.APIViewSet(**kwargs)
Does not provide any actions by default.

class pyramid_restful.viewsets.GenericAPIViewSet(**kwargs)
The GenericAPIView class does not provide any actions by default, but does include the base set of generic
view behavior, such as the get_object and get_query methods.

class pyramid_restful.viewsets.ReadOnlyModelViewSet(**kwargs)
A ViewSet that provides default list() and retrieve() actions.

class pyramid_restful.viewsets.ModelCRUDViewSet(**kwargs)
A ViewSet that provides default create(), retrieve(), update(), destroy() and list() actions.

class pyramid_restful.viewsets.ModelCRPDViewSet(**kwargs)
A ViewSet that provides default create(), retrieve(), partial_update(), destroy() and
list() actions.

class pyramid_restful.viewsets.ModelCRUPDViewSet(**kwargs)
A viewset that provides default create(), retrieve(), partial_update(), 'update(),
destroy() and list() actions.

29

Pyramid Restful Framework Documentation, Release 1.0.0

30 Chapter 12. viewsets

CHAPTER 13

mixins

class pyramid_restful.mixins.ListModelMixin
List objects.

class pyramid_restful.mixins.RetrieveModelMixin
Retrieve a single object.

class pyramid_restful.mixins.CreateModelMixin
Create object from serialized data.

perform_create(data)
Hook for controlling the creation of an model instance. Override this if you need to do more with your
data before saving your object than just mapping the deserialized data to a new instance of self.model.

class pyramid_restful.mixins.UpdateModelMixin
Update a model instance (PUT).

perform_update(data, instance)
Hook for controlling the update of an model instance. Override this if you need to do more with your data
before updating the object than just mapping the deserialized data to the attribute of the instance.

class pyramid_restful.mixins.PartialUpdateMixin
Support for partially updating instance (PATCH).

perform_partial_update(data, instance)
Hook for controlling the update of an model instance. Override this if you need to do more with your data
before updating the object than just mapping the deserialized data to the attribute of the instance.

class pyramid_restful.mixins.DestroyModelMixin
Destroy a model instance.

perform_destroy(instance)
Hook for controlling the deletion of an model instance. Override this if you need to do more than just
delete the instance.

class pyramid_restful.mixins.ActionSchemaMixin
Allows you to use different schema depending on the action being taken by the request. Defaults to the standard
schema_class if no actions are specified.

31

Pyramid Restful Framework Documentation, Release 1.0.0

32 Chapter 13. mixins

CHAPTER 14

decorators

pyramid_restful.decorators.detail_route(methods=None, **kwargs)
Used to mark a method on a ViewSet that should be routed for detail requests.

Usage:

class UserViewSet(ModelCRUDViewSet):
model = User
schema = UserSchema

@detail_route(methods=['post'], url_path='lock-user')
def lock_user(request, id):

...

Parameters

• methods – An iterable of strings representing the HTTP (GET, POST, etc.) methods ac-
cepted by the route.

• url_path – Replaces the route automatically generated by the ViewSetRouter for the
decorated method with the value provided.

pyramid_restful.decorators.list_route(methods=None, **kwargs)
Used to mark a method on a ViewSet that should be routed for list requests.

Usage:

class UserViewSet(ModelCRUDViewSet):
model = User
schema = UserSchema

@list_route(methods=['get'], url_path='active-users')
def active_users(request, *args, **kwargs):

...

Parameters

33

Pyramid Restful Framework Documentation, Release 1.0.0

• methods – An iterable of strings representing the HTTP (GET, POST, etc.) methods ac-
cepted by the route.

• url_path – Replaces the route automatically generated by the ViewSetRouter for the
decorated method with the value provided.

34 Chapter 14. decorators

CHAPTER 15

routers

class pyramid_restful.routers.ViewSetRouter(configurator, trailing_slash=True)
Automatically adds routes and associates views to the Pyramid Configurator for ViewSets, including any
decorated list_routes and detail_routes.

register(prefix, viewset, basename, factory=None, permission=None)
Factory and permission are likely only going to exist until I have enough time to write a permissions
module for PRF.

Parameters

• prefix – the uri route prefix.

• viewset – The ViewSet class to route.

• basename – Used to name the route in pyramid.

• factory – Optional, root factory to be used as the context to the route.

• permission – Optional, permission to assign the route.

35

Pyramid Restful Framework Documentation, Release 1.0.0

36 Chapter 15. routers

CHAPTER 16

permissions

class pyramid_restful.permissions.BasePermission
All permission classes should inherit from this class.

message = None
Override message to customize the message associated with the exception.

has_permission(request, view)
Checked on every request to a view. Return True if permission is granted else False.

Parameters

• request – The request sent to the view.

• view – The instance of the view being accessed.

Returns Boolean

has_object_permission(request, view, obj)
Checked when a request is for a specific object. Return True if permission is granted else False.

Parameters

• request – The request sent to the view.

• view – The instance of the view being accessed.

• obj – The object being accessed.

Returns Boolean

37

Pyramid Restful Framework Documentation, Release 1.0.0

38 Chapter 16. permissions

CHAPTER 17

filters

class pyramid_restful.filters.BaseFilter
Base interface that that all filter classes must implement.

filter_query(request, query, view)
This method must be overridden.

Parameters

• request – The request being processed.

• query – The query to be filtered.

• view – The view the filter is being applied to.

Returns The filtered query.

class pyramid_restful.filters.AttributeBaseFilter
A base class for implementing filters on SQLAlchemy model attributes. Supports filtering a comma separated
list using OR statements and relationship filter using the . path to attribute. WARNING: Every relationship in a
. path is joined.

Expects the query string parameters to be formatted as: key[field_name]=val.

Example: filter[email]=test@exmaple.com

query_string_lookup = None
The key to use when parsing the request’s query string. The key in key[field_name]=val.

view_attribute_name = None
The name of the class attribute used in the view class that uses the filter that specifies which fields can be
filtered on.

parse_query_string(params)
Override this method if you need to support query string filter keys other than those in the format of
key[field_name]=val. Maps query string values == ‘null’ to None.

Parameters params – The query string parameters from request.params.

Returns Dictionary.

39

Pyramid Restful Framework Documentation, Release 1.0.0

filter_query(request, query, view)
You may want to override this method if you want to add custom filtering to an ViewSet while still utilizing
the feature of the AttributeFilter implementation.

Parameters

• request – The pyramid Request instance.

• query – The SQLAlchemy Query instance.

• view – An instance of the view class that the filter has been applied to.

Returns The filtered query.

apply_filter(query, filter_list)
Override this if you need to do something beside calling filter on the query.

Parameters

• query – the query that will be returned from the filter_query method.

• filter_list – An array of SQLAlchemy comparative statements.

Returns The query.

build_comparision(field, value)
Must be overridden. Given the model field and the value to be filtered, this should return the statement to
be appended as a filter to the final query.

class pyramid_restful.filters.FieldFilter
Filters a query based on the filter_fields set on the view. filter_fields should be a list of
SQLAlchemy Model columns.

Comma separated values are treated as ORs. Multiple filter[<field>] query params are AND’d together.

Usage:

class UserViewSet(ModelCRUDViewSet):
model = User
schema = UserSchema
filter_classes = (FieldFilter,)
filter_fields = (User.email, User.name,)

build_comparision(field, value)
Must be overridden. Given the model field and the value to be filtered, this should return the statement to
be appended as a filter to the final query.

class pyramid_restful.filters.SearchFilter
Implements LIKE filtering based on the search[field_name]=val querystring. Comma separated values are
treated as ORs. Multiple search[<fields>] are OR’d together.

Usage:

class UserViewSet(ModelCRUDViewSet):
model = User
schema = UserSchema
filter_classes = (SearchFilter,)
filter_fields = (User.email, User.name,)

build_comparision(field, value)
Must be overridden. Given the model field and the value to be filtered, this should return the statement to
be appended as a filter to the final query.

40 Chapter 17. filters

Pyramid Restful Framework Documentation, Release 1.0.0

apply_filter(query, filter_list)
Override this if you need to do something beside calling filter on the query.

Parameters

• query – the query that will be returned from the filter_query method.

• filter_list – An array of SQLAlchemy comparative statements.

Returns The query.

class pyramid_restful.filters.OrderFilter
Allow ordering of the query based on an order[field]=(asc || desc) query string.

Usage:

class UserViewSet(ModelCRUDViewSet):
model = User
schema = UserSchema
filter_classes = (OrderFilter,)
filter_fields = (User.created, User.name,)

build_comparision(field, value)
Must be overridden. Given the model field and the value to be filtered, this should return the statement to
be appended as a filter to the final query.

apply_filter(query, filter_list)
Override this if you need to do something beside calling filter on the query.

Parameters

• query – the query that will be returned from the filter_query method.

• filter_list – An array of SQLAlchemy comparative statements.

Returns The query.

41

Pyramid Restful Framework Documentation, Release 1.0.0

42 Chapter 17. filters

CHAPTER 18

expandables

class pyramid_restful.expandables.ExpandableSchemaMixin
A mixin class for marshmallow.Schema classes. Supports optionally expandable fields based on the value
of the query string parameters. The query string parameter’s key is determined by the value of the QUERY_KEY
class attribute.

Fields that can be expanded are defined in the schema’s Meta class using the expandable_fields attribute.
The value of expandable_fields should be a dictionary who’s keys are used to match the value of the
requests’s query string parameter and the value should be a marshmallow.fields.Nested definition.

Usage:

from marshmallow import Schema, fields

from pyramid_restful.expandables import ExpandableSchemaMixin

class UserSchema(ExpandableSchemaMixin, schema)
id = fields.Integer()
name = fields.String()
email = fields.String()

class Meta:
expandable_fields = {
'account': fields.Nested('AccountSchema')

}

OPTIONS_CLASS
alias of ExpandableOpts

QUERY_KEY = 'expand'
The query string parameter name used for expansion.

class pyramid_restful.expandables.ExpandableViewMixin
Optionally used to allow more fine grained control over the query used to pull data. expandable_fields
should be a dictionary of key = the field name that is expandable and val = a dict with the following keys.

• join (optional): A table column to join() to the query.

43

Pyramid Restful Framework Documentation, Release 1.0.0

• outerjoin (optional): A table column to outerjoin() to the query.

• options (optional): A list passed to the constructed queries’ options method. This is where you want to
include the related objects to expand on. Without a value you here you will likely end up running lots of
extra queries.

Example:

expandable_fields = {
'author': {'join': Book.author, 'options': [joinedload(Book.author)]

}

expandable_fields = None
A dictionary of the fields can be expanded. Its definition is described above.

get_query()
If you override this method do not forget to call super().

44 Chapter 18. expandables

CHAPTER 19

pagination

class pyramid_restful.pagination.BasePagination
The base class each Pagination class should implement.

paginate_query(query, request)

Parameters

• query – SQLAlchemy query.

• request – The request from the view

Returns The paginated date based on the provided query and request.

get_paginated_response(data)

Parameters data – The paginated data.

Returns A response containing the paginated data.

class pyramid_restful.pagination.PageNumberPagination
A simple page number based style that supports page numbers as query parameters.

For example:

http://api.example.org/accounts/?page=4
http://api.example.org/accounts/?page=4&page_size=100

page_size can be overridden as class attribute:

class MyPager(PageNumberPagination):
page_size = 10

The resulting response JSON has four attributes, count, next, previous and results. Count indicates the total
number of objects before pagination. Next and previous contain URLs that can be used to retrieve the next and
previous pages of date respectively. The results attribute contains the list of objects that belong to page of data.

Example:

45

Pyramid Restful Framework Documentation, Release 1.0.0

{
'count': 50,
'next': 'app.myapp.com/api/users?page=3',
'previous': 'app.myapp.com/api/users?page=1',
'results': [

{id: 4, 'email': 'user4@myapp.com', 'name': 'John Doe'},
{id: 5, 'email': 'user5@myapp.com', 'name': 'Jan Doe'}

]
}

paginate_query(query, request)

Parameters

• query – SQLAlchemy query.

• request – The request from the view

Returns The paginated date based on the provided query and request.

get_paginated_response(data)

Parameters data – The paginated data.

Returns A response containing the paginated data.

get_url_root()
Override this if you need a different root url. For example if the app is behind a reverse proxy and you
want to use the original host in the X-Forwarded-Host header.

class pyramid_restful.pagination.LinkHeaderPagination
Add a header field to responses called Link. The value of the Link header contains information about traversing
the paginated resource. For more information about link header pagination checkout githhub’s great explanation:
https://developer.github.com/v3/guides/traversing-with-pagination/

get_paginated_response(data)

Parameters data – The paginated data.

Returns A response containing the paginated data.

46 Chapter 19. pagination

https://developer.github.com/v3/guides/traversing-with-pagination/

CHAPTER 20

Indices and tables

• genindex

• modindex

• search

47

Pyramid Restful Framework Documentation, Release 1.0.0

48 Chapter 20. Indices and tables

Python Module Index

p
pyramid_restful.decorators, 33
pyramid_restful.expandables, 43
pyramid_restful.filters, 39
pyramid_restful.generics, 27
pyramid_restful.mixins, 31
pyramid_restful.pagination, 45
pyramid_restful.permissions, 37
pyramid_restful.routers, 35
pyramid_restful.views, 25
pyramid_restful.viewsets, 29

49

Pyramid Restful Framework Documentation, Release 1.0.0

50 Python Module Index

Index

A
ActionSchemaMixin (class in pyramid_restful.mixins),

31
APIView (class in pyramid_restful.views), 25
APIViewSet (class in pyramid_restful.viewsets), 29
apply_filter() (pyramid_restful.filters.AttributeBaseFilter

method), 40
apply_filter() (pyramid_restful.filters.OrderFilter

method), 41
apply_filter() (pyramid_restful.filters.SearchFilter

method), 40
as_view() (pyramid_restful.viewsets.ViewSetMixin class

method), 29
AttributeBaseFilter (class in pyramid_restful.filters), 39

B
BaseFilter (class in pyramid_restful.filters), 39
BasePagination (class in pyramid_restful.pagination), 45
BasePermission (class in pyramid_restful.permissions),

37
build_comparision() (pyra-

mid_restful.filters.AttributeBaseFilter method),
40

build_comparision() (pyramid_restful.filters.FieldFilter
method), 40

build_comparision() (pyramid_restful.filters.OrderFilter
method), 41

build_comparision() (pyramid_restful.filters.SearchFilter
method), 40

C
check_object_permissions() (pyra-

mid_restful.views.APIView method), 25
check_permissions() (pyramid_restful.views.APIView

method), 25
CreateAPIView (class in pyramid_restful.generics), 28
CreateModelMixin (class in pyramid_restful.mixins), 31

D
DestroyAPIView (class in pyramid_restful.generics), 28

DestroyModelMixin (class in pyramid_restful.mixins), 31
detail_route() (in module pyramid_restful.decorators), 33

E
expandable_fields (pyra-

mid_restful.expandables.ExpandableViewMixin
attribute), 44

ExpandableSchemaMixin (class in pyra-
mid_restful.expandables), 43

ExpandableViewMixin (class in pyra-
mid_restful.expandables), 43

F
FieldFilter (class in pyramid_restful.filters), 40
filter_classes (pyramid_restful.generics.GenericAPIView

attribute), 27
filter_query() (pyramid_restful.filters.AttributeBaseFilter

method), 39
filter_query() (pyramid_restful.filters.BaseFilter method),

39
filter_query() (pyramid_restful.generics.GenericAPIView

method), 28

G
GenericAPIView (class in pyramid_restful.generics), 27
GenericAPIViewSet (class in pyramid_restful.viewsets),

29
get_object() (pyramid_restful.generics.GenericAPIView

method), 27
get_paginated_response() (pyra-

mid_restful.generics.GenericAPIView
method), 28

get_paginated_response() (pyra-
mid_restful.pagination.BasePagination
method), 45

get_paginated_response() (pyra-
mid_restful.pagination.LinkHeaderPagination
method), 46

51

Pyramid Restful Framework Documentation, Release 1.0.0

get_paginated_response() (pyra-
mid_restful.pagination.PageNumberPagination
method), 46

get_permissions() (pyramid_restful.views.APIView
method), 25

get_query() (pyramid_restful.expandables.ExpandableViewMixin
method), 44

get_query() (pyramid_restful.generics.GenericAPIView
method), 27

get_schema() (pyramid_restful.generics.GenericAPIView
method), 28

get_schema_class() (pyra-
mid_restful.generics.GenericAPIView
method), 27

get_schema_context() (pyra-
mid_restful.generics.GenericAPIView
method), 28

get_url_root() (pyramid_restful.pagination.PageNumberPagination
method), 46

H
has_object_permission() (pyra-

mid_restful.permissions.BasePermission
method), 37

has_permission() (pyra-
mid_restful.permissions.BasePermission
method), 37

I
initial() (pyramid_restful.views.APIView method), 25

L
LinkHeaderPagination (class in pyra-

mid_restful.pagination), 46
list_route() (in module pyramid_restful.decorators), 33
ListAPIView (class in pyramid_restful.generics), 28
ListCreateAPIView (class in pyramid_restful.generics),

28
ListModelMixin (class in pyramid_restful.mixins), 31
lookup_field (pyramid_restful.generics.GenericAPIView

attribute), 27

M
message (pyramid_restful.permissions.BasePermission

attribute), 37
model (pyramid_restful.generics.GenericAPIView

attribute), 27
ModelCRPDViewSet (class in pyramid_restful.viewsets),

29
ModelCRUDViewSet (class in pyramid_restful.viewsets),

29
ModelCRUPDViewSet (class in pyra-

mid_restful.viewsets), 29

O
options() (pyramid_restful.views.APIView method), 25
OPTIONS_CLASS (pyra-

mid_restful.expandables.ExpandableSchemaMixin
attribute), 43

OrderFilter (class in pyramid_restful.filters), 41

P
PageNumberPagination (class in pyra-

mid_restful.pagination), 45
paginate_query() (pyra-

mid_restful.generics.GenericAPIView
method), 28

paginate_query() (pyra-
mid_restful.pagination.BasePagination
method), 45

paginate_query() (pyra-
mid_restful.pagination.PageNumberPagination
method), 46

pagination_class (pyra-
mid_restful.generics.GenericAPIView at-
tribute), 27

paginator (pyramid_restful.generics.GenericAPIView at-
tribute), 28

parse_query_string() (pyra-
mid_restful.filters.AttributeBaseFilter method),
39

PartialUpdateMixin (class in pyramid_restful.mixins), 31
perform_create() (pyra-

mid_restful.mixins.CreateModelMixin
method), 31

perform_destroy() (pyra-
mid_restful.mixins.DestroyModelMixin
method), 31

perform_partial_update() (pyra-
mid_restful.mixins.PartialUpdateMixin
method), 31

perform_update() (pyra-
mid_restful.mixins.UpdateModelMixin
method), 31

permission_classes (pyramid_restful.views.APIView at-
tribute), 25

pyramid_restful.decorators (module), 33
pyramid_restful.expandables (module), 43
pyramid_restful.filters (module), 39
pyramid_restful.generics (module), 27
pyramid_restful.mixins (module), 31
pyramid_restful.pagination (module), 45
pyramid_restful.permissions (module), 37
pyramid_restful.routers (module), 35
pyramid_restful.views (module), 25
pyramid_restful.viewsets (module), 29

52 Index

Pyramid Restful Framework Documentation, Release 1.0.0

Q
QUERY_KEY (pyramid_restful.expandables.ExpandableSchemaMixin

attribute), 43
query_string_lookup (pyra-

mid_restful.filters.AttributeBaseFilter at-
tribute), 39

R
ReadOnlyModelViewSet (class in pyra-

mid_restful.viewsets), 29
register() (pyramid_restful.routers.ViewSetRouter

method), 35
RetrieveAPIView (class in pyramid_restful.generics), 28
RetrieveDestroyAPIView (class in pyra-

mid_restful.generics), 28
RetrieveModelMixin (class in pyramid_restful.mixins),

31
RetrieveUpdateAPIView (class in pyra-

mid_restful.generics), 28
RetrieveUpdateDestroyAPIView (class in pyra-

mid_restful.generics), 28

S
schema_class (pyramid_restful.generics.GenericAPIView

attribute), 27
SearchFilter (class in pyramid_restful.filters), 40

U
UpdateAPIView (class in pyramid_restful.generics), 28
UpdateModelMixin (class in pyramid_restful.mixins), 31

V
view_attribute_name (pyra-

mid_restful.filters.AttributeBaseFilter at-
tribute), 39

ViewSetMixin (class in pyramid_restful.viewsets), 29
ViewSetRouter (class in pyramid_restful.routers), 35

Index 53

	Quick Start
	Configuration
	Class-based Views
	Permissions

	Generic Views
	API Reference

	ViewSets
	Example
	ViewSet Actions
	Including extra actions for routing
	Base ViewSet Classes

	Permissions
	Filters
	FieldFilter
	SearchFilter
	OrderFilter

	Expandables
	ExpandableViewMixin
	ExpandableSchemaMixin

	Pagination
	Custom Pagination Classes

	views
	generics
	viewsets
	mixins
	decorators
	routers
	permissions
	filters
	expandables
	pagination
	Indices and tables
	Python Module Index

